
Package: memo (via r-universe)
August 25, 2024

Type Package

Title In-Memory Caching of Repeated Computations (Memoization)

Version 1.1.1

Date 2023-12-11

Author Peter Meilstrup <peter.meilstrup@gmail.com>

Maintainer Peter Meilstrup <peter.meilstrup@gmail.com>

Description A simple in-memory, LRU cache that can be wrapped around
any function to memoize it. The cache is keyed on a hash of the
input data (using 'digest') or on pointer equivalence.

License MIT + file LICENSE

Encoding UTF-8

Imports digest

Suggests testthat (>= 0.2), knitr, rmarkdown

Collate 'lru.R' 'cache.R' 'getPointer.R' 'map.R' 'memo-description.r'

VignetteBuilder knitr

RoxygenNote 7.2.3

Repository https://crowding.r-universe.dev

RemoteUrl https://github.com/crowding/memo

RemoteRef HEAD

RemoteSha 6d4498a8e98198416f0150ffb247a969fe34603d

Contents
memo-package . 2
cache_stats . 2
hashmap . 3
memo . 4
permanent_cache . 5
strategies . 5

Index 7

1

2 cache_stats

memo-package In-memory caching of repeated computations, by pointer equivalence.

Description

The ‘memo‘ package implements a cache that can be used to avoid repeated computations of func-
tions. The cache lookup is based on object identity (i.e. pointer equivalence) which is suited for
functions like accessors or other functions that are called repeatedly on the same object.

Author(s)

Peter Meilstrup

cache_stats Report cache statistics.

Description

Report cache statistics.

Usage

cache_stats(fn)

Arguments

fn A memoized function that was created by memo.

Value

A list with labels "size", "used", "hits", "misses", "expired" counting the number of slots in the
cache, the number of slots currently used, the number of times a previous result was recalled, a new
result was recorded, and a result was dropped.

hashmap 3

hashmap A reference-valued, key-value store.

Description

[hashmap()] constructs a hashmap, which is an object that behaves like an [environment] but can
key on arbitrary objects rather than just characters.

Usage

hashmap()

S3 method for class 'hashmap'
x[...]

S3 replacement method for class 'hashmap'
x[...] <- value

S3 method for class 'hashmap'
x[[...]]

S3 replacement method for class 'hashmap'
x[[...]] <- value

keys(x, ...)

values(x, ...)

to_pairs(x, ...)

from_pairs(pairs)

hasKey(x, ...)

dropKey(x, ...)

Arguments

x a hashmap object.

... Any number of indices.

value A replacement value for ‘[[‘; for ’[’, a sequence of replacement values.

pairs A list of pairs, the first element is treated as key and the second as value.

4 memo

Details

You can use multiple indices in a hashmap; the effect is similar to indexing on a list containing all
keys.

Type is significant; for instance, float ‘1‘ and integer ‘1L‘ are considered distinct indices. It is also
permitted to index on NULL, NA, or the empty string.

The ‘memo‘ package hashmap has a performance optimization over other implementations of this
concept, in that the md5 digest is memoized on scalar and pointer values. That means that if you
lookup using keys that are pointer-identical to previously seen keys, it will skip computing the digest
a second time. Indexing using scalar values will also bypass the md5 hash.

Value

‘hashmap()‘ returns a newly constructed hashmap.

‘pairs(x)‘ extracts from a hashmap a list of pairs, each pair being of the form ‘list(key=, val=)‘.

‘hasKey(x)‘ returns TRUE if there is a key with the same digest as ‘...‘ that compares [identical()]

Author(s)

Peter Meilstrup

memo Memoize a function.

Description

Memoize a function.

Usage

memo(fn, cache = lru_cache(5000), key = hybrid_key, ...)

Arguments

fn A function to wrap. It should be a pure function (i.e. it should not cause side
effects, and should not depend on any variables that may change.) It should
not be a nonstandard-evaluating function. All arguments will be forced by the
wrapper.

cache A cache to use. Defaults to a new instance of lru_cache. Caches may be shared
between memoized functions.

key A hashing strategy. The default "hybrid_key" first checks for pointer equiva-
lence and then falls back to using a hash of the arguments. ‘pointer_key‘ uses
just pointer equivalence, and ‘digest_key‘ always performs a hash.

... Further arguments passed on to key.

permanent_cache 5

permanent_cache ‘basic_cache‘ makes a cache that does not expire old entries. It should
be used in situations where you know the number of things to remem-
ber is bounded.

Description

‘basic_cache‘ makes a cache that does not expire old entries. It should be used in situations where
you know the number of things to remember is bounded.

Construct a cache with least-recently-used policy.

Usage

permanent_cache()

lru_cache(size = 10000)

Arguments

size The maximum number of results to keep.

Value

A function f(key, value) which takes a string in the first parameter and a lazily evaluated value in
the second. ‘f‘ will use the string key to retrieve a value from the cache, or return the matching
item from the cache, or force the second argument and return that, remembering the result on future
calls.

When the number of entries in the cache exceeds size, the least recently accessed entries are
removed.

strategies Strategies for caching items.

Description

The function memo accepts an argument ‘key‘ which specifies the keying strategy.

Usage

digest_key(fn, cache, digest = digest::digest)

pointer_key(fn, cache)

hybrid_key(fn, cache, digest = function(x) digest::digest(x, "md5"))

6 strategies

Arguments

fn A function whose results should be cached.

cache A cache object.

digest A digest function to use.

Value

A memoized function.

Index

[.hashmap (hashmap), 3
[<-.hashmap (hashmap), 3
[[.hashmap (hashmap), 3
[[<-.hashmap (hashmap), 3
_PACKAGE (memo-package), 2

cache_stats, 2

digest_key (strategies), 5
dropKey (hashmap), 3

from_pairs (hashmap), 3

hashmap, 3
hasKey (hashmap), 3
hybrid_key, 4
hybrid_key (strategies), 5

keys (hashmap), 3

lru_cache, 4
lru_cache (permanent_cache), 5

memo, 2, 4, 5
memo-package, 2

permanent_cache, 5
pointer_key (strategies), 5

strategies, 5

to_pairs (hashmap), 3

values (hashmap), 3

7

	memo-package
	cache_stats
	hashmap
	memo
	permanent_cache
	strategies
	Index

